Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines
نویسنده
چکیده
A real n-dimensional homogeneous polynomial f (x) of degree m and a real constant c define an algebraic hypersurface S whose points satisfy f (x) = c. The polynomial f can be represented by Axm where A is a real mth order n-dimensional supersymmetric tensor. In this paper, we define rank, base index and eigenvalues for the polynomial f , the hypersurface S and the tensor A. The rank is a nonnegative integer r less than or equal to n. When r is less than n, A is singular, f can be converted into a homogeneous polynomial with r variables by an orthogonal transformation, and S is a cylinder hypersurface whose base is r -dimensional. The eigenvalues of f , A and S always exist. The eigenvectors associated with the zero eigenvalue are either recession vectors or degeneracy vectors of positive degree, or their sums. When c 6= 0, the eigenvalues with the same sign as c and their eigenvectors correspond to the characterization points of S, while a degeneracy vector generates an asymptotic ray for the base of S or its conjugate hypersurface. The base index is a nonnegative integer d less than m. If d = k, then there are nonzero degeneracy vectors of degree k−1, but no nonzero degeneracy vectors of degree k. A linear combination of a degeneracy vector of degree k and a degeneracy vector of degree j is a degeneracy vector of degree k+ j−m if k+ j ≥ m. Based upon these properties, we classify such algebraic hypersurfaces in the nonsingular case into ten classes. c © 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملEigenvalues of a real supersymmetric tensor
In this paper, we define the symmetric hyperdeterminant, eigenvalues and E-eigenvalues of a real supersymmetric tensor. We show that eigenvalues are roots of a one-dimensional polynomial, and when the order of the tensor is even, E-eigenvalues are roots of another one-dimensional polynomial. These two one-dimensional polynomials are associated with the symmetric hyperdeterminant. We call them t...
متن کاملStudy of fullerenes by their algebraic properties
The eigenvalues of a graph is the root of its characteristic polynomial. A fullerene F is a 3- connected graphs with entirely 12 pentagonal faces and n/2 -10 hexagonal faces, where n is the number of vertices of F. In this paper we investigate the eigenvalues of a class of fullerene graphs.
متن کاملCounting Rational Points on Algebraic Varieties
In these lectures we will be interested in solutions to Diophantine equations F (x1, . . . , xn) = 0, where F is an absolutely irreducible polynomial with integer coefficients, and the solutions are to satisfy (x1, . . . , xn) ∈ Z. Such an equation represents a hypersurface in A, and we may prefer to talk of integer points on this hypersurface, rather than solutions to the corresponding Diophan...
متن کاملEigenvalues and invariants of tensors
A tensor is represented by a supermatrix under a co-ordinate system. In this paper, we define E-eigenvalues and E-eigenvectors for tensors and supermatrices. By the resultant theory, we define the E-characteristic polynomial of a tensor. An E-eigenvalue of a tensor is a root of the E-characteristic polynomial. In the regular case, a complex number is an E-eigenvalue if and only if it is a root ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 41 شماره
صفحات -
تاریخ انتشار 2006